
Detecting vortices in superconductors: Extracting one-dimensional topological singularities from a
discretized complex scalar field

Carolyn L. Phillips,1, ∗ Tom Peterka,1 Dmitry Karpeyev,1 and Andreas Glatz2

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
2Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA

(Dated: December 4, 2014)

In type-II superconductors, the dynamics of superconducting vortices determine their transport properties.
In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter.
Extracting their precise positions and motion from discretized numerical simulation data is an important, but
challenging task. In the past, vortices have mostly been detected by analyzing the magnitude of the complex
scalar field representing the order parameter and visualized by corresponding contour plots and isosurfaces.
However, these methods, primarily used for small-scale simulations, blur the fine details of the vortices, scale
poorly to large-scale simulations, and do not easily enable isolating and tracking individual vortices. Here
we present a method for exactly finding the vortex core lines from a complex order parameter field. With this
method, vortices can be easily described at a resolution even finer than the mesh itself. The precise determination
of the vortex cores allows the interplay of the vortices inside a model superconductor to be visualized in higher
resolution than has previously been possible. By representing the field as the set of vortices, this method also
massively reduces the data footprint of the simulations and provides the data structures for further analysis and
feature tracking.

I. INTRODUCTION

Many phenomena in nature can be described by the behav-
ior of complex scalar functions or vector fields, ranging from
electromagnetic fields, to director fields in liquid crystals,
spins in magnets, and complex order parameters in superfluids
and superconductors. Topological defects in those functions
or fields represent important features of the underlying phys-
ical system: Examples are (zero-dimensional) point defects
or monopoles, (one-dimensional) defect lines or strings, and
(two-dimensional) domain walls. Here we concentrate on the
case of defect lines, which in the case of a complex scalar field
are defined by one-dimensional manifolds, where the phase of
the complex function is undefined. These topological singu-
larities or defects are typically associated with circulations in
the phase gradient and are referred to simply as vortices. Sub-
stantial work has been invested in studying the dynamics of
vortices in different contexts, such as crossing and reconnec-
tion and the formation of knots in superfluid vortices[1, 2], in
light waves[3] and in fluid flows[4], as well as their evolution
in more mathematically generalize contexts[5].

In type-II superconductors, an externally applied magnetic
field penetrates the system above the first critical field in the
form of flux tubes (vortices), which carry integer numbers of
flux quanta (typically one flux quantum). The magnetic flux in
the vortex core is screened by a circular supercurrent around
it. In the dissipative regions, vortices are dynamic objects that
nucleate and annihilate, they can cut each other and recon-
nect. In static situations, vortices can be pinned by material
defects inside the superconductor. The behavior of vortices
carrying magnetic flux determines the material’s ability to sus-
tain the dissipationless/superconducting state. When vortices
move, the system becomes dissipative and a finite voltage

∗ corresponding author E-mail address: cphillips@anl.gov

drop across the system is observed. In the Ginzburg-Landau
theory of superconductivity, the local superconducting prop-
erties of the material are described by a spatially dependent
complex order parameter ψ , and vortices correspond to topo-
logical phase singularities of ψ . Using the time-dependent
Ginzburg-Landau (TDGL) equations, coupled partial differ-
ential equations evolving the scalar ψ field in time, one can
find steady state solutions of the superconductor in the pres-
ence of external magnetic fields and applied currents.

Simulations to model superconductors via the TDGL equa-
tions are numerically intensive. Prior to now, this method usu-
ally has been limited to 2D simulation[6–9] or small 3D sim-
ulation [10]. Only recently has work been initiated to imple-
ment large 3D simulations where macroscale phenomena can
be observed[11, 12] taking into account the collective dynam-
ics of many vortices. Reaching the macroscale in these large
3D simulations requires both a stable numerical discretization
of the TDGL equations[11] as well as the use of advanced
computing resources. It requires the codesign of analysis tech-
niques that can scale with the application. For large and long
simulations, recording the state of the system by frequently
storing the entire state of the system will be untenable. For-
tunately, to support a detailed analysis of the vortex dynam-
ics over time, only the location of vortices themselves are re-
quired.

Here we introduce a data analysis method for the numer-
ical extraction of a vortex from a complex order parameter
field obtained from large-scale simulations of a type-II super-
conductor. This analysis generates vortex objects, or reduced
mathematical representations of one-dimensional curves that
correspond to individual vortices from a discretized complex
scalar field. An example of the complex and tangled vortex
state that can extracted using this method is shown in Figure
1. This analysis has applications to discretized complex fields
containing topological defects, for example, optical vortices
in electromagnetic fields as well as other problems described
by the complex Ginzburg-Landau equations such as screw

2

FIG. 1: View along the x-axis of a superconducting material simulated using the TDGL equations. We show the material
defects, or inclusions (spheres) and the tangled vortex loops extracted by the methods described here. The magnetic field and
current along the x-axis cause the vortices to twist and writhe and the inclusions pin the vortices in place. The vortices were

extracted from a complex scalar field discretized over a grid of 256×512×128 points.

dislocations[13] cosmic strings[14], superfluidity, and Bose-
Einstein condensation; strings in field theory [15]; topological
defects in liquid crystals [16]; and models of fluid dynamics
with complicated nonlinear dynamics [17].

In Section II, we briefly survey prior methods for detect-
ing vortices in complex scalar fields. In Section III, we pro-
vide our algorithm. We show how vortex core points are
detected, interpolated, and then efficiently stitched together
to form topologically-ordered objects and then further com-
pacted into mesh-independent objects. In Section IV, we dis-
cuss the performance and scaling of this algorithm with re-
spect to the mesh size or the density of the vortex state. In
Section V, we provide concluding remarks.

II. BACKGROUND AND PRIOR WORK

In terms of ψ , a vortex line is defined as the locus of points
where |ψ| = 0 and where

∮
∇θ ·ds= 2nπ , where θ is the phase

of ψ . The integration is performed on a closed loop around a
vortex line, and n is a nonzero integer, usually ±1. The sign
of n indicates the chirality of the vortex with respect to direc-
tion of integration around the closed loop. Figure 2, which
shows the magnitude and phase of ψ in a yz plane slice of a
3D field, demonstrates the correspondence between these two
measures. Two black boxes surround two vortex cores on both
the top left and right images. In the top left image, the contour
lines indicate that |ψ| = 0 in the center of the boxes. For the
right image, the expanded views at the bottom show the defect
in the phase field present at both locations. In both cases the
phase sums to 2π in an appropriately defined loop.

In numerical studies of type-II superconductors, the phase
information of the field is typically disregarded, and vortices
are identified by examining the contour plots of |ψ| in 2D
[8, 9] (or the isosurfaces of |ψ| in 3D [10]). Sometimes the
contour plot is supplemented by examining plots of the phase
of ψ [6] when unusual features, such as a giant vortex state,
are suspected. The assessment of the vortex positions in these



-

0

FIG. 2: (top left) The contour plot of a slice of the magnitude
of a complex field. (top right) The plot of the phase of ψ for

a slice of the complex field. A black box is drawn around two
vortex cores in both slices. (bottom left) For the vortex core
in the middle of slice, integrating the phase around the box

shows a phase jump. (bottom right) For the vortex core at the
bottom of the slice, integrating the phase around a box of the

same size will produce errors because the phase oscillates
four times along the top and bottom edge of the box. The

region of the slice where the phase lines become crowded is
arbitrarily determined. By applying a gauge transformation at

each point, locally the data can be transformed to have the
lowest possible density of phase lines anywhere in the slice.

3

contour fields is qualitative, but sufficient to show how vor-
tices self-organize in small simulations.

In large-scale 3D simulations, generating isosurfaces is not
a viable technique for understanding vortex behavior. First,
qualitative assessments of how the vortices self-organize fails
for large 3D data sets with densely packed entangled vortices.
Second, storing data to visualize a contour or isosurface does
not significantly reduce the size of the data in a time step.
Third, the format of isosurfaces and contour data, especially
in dense distributions of vortices, does not easily lend itself
to tracking individual vortex dynamics over time; more pre-
cise numerical interpretations are required. Fourth, using con-
tours to find vortices fails completely when the superconduc-
tor model includes simulated material defects (shown in Fig-
ure 1) often modeled as a suppression of the magnitude of the
ψ field[11]. With an isosurface method, the location of a vor-
tex core inside an inclusion cannot be visualized because the
magnitude of the field around the vortex is suppressed inside
the inclusion.

Here we introduce a data analysis method for exact numeri-
cal extraction of a vortex from a complex order parameter field
obtained from large-scale simulations of a type-II supercon-
ductor. Rather than relying on the contours of the magnitude
of the complex field, our analysis method finds the curves of
singularity points in the phase of ψ by integrating the phase of
ψ around small loops. The analysis then extracts these points
in topologically ordered sets that represent each vortex. This
method also allows direct measurement of the chirality of a
vortex, or the direction (clockwise or counterclockwise) of the
supercurrent flow around the vortex core line. This method
reduces the representation of a 3D field to a set of discrete
1D objects. Previously, parts of these techniques have been
applied to trace vortices in small-scale 3D type-II supercon-
ductor data [18, 19] and to find optical vortices in experimen-
tally measured electromagnetic fields [20, 21]. However, the
target and scale of our application, the techniques for unwrap-
ping the phase locally, the interpolation to more precisely de-
scribe the vortex object, the method for rapidly constructing a
vortex object from a subgraph, the introduction of a compact
and mesh-independent representation, and the general consid-
eration of the computational efficiency of the extraction are
unique to our work.

III. METHOD

The source of our data set is a TDGL model implemented
on a structured finite-difference discretization mesh with a
uniform grid spacing oriented along the x,y,z axes of the space.
We refer to this as a regular Cartesian mesh.

Our algorithm, as described in Algorithm 1, extracts vor-
tices from the data by performing closed loop integrations of
the phase around every mesh element face. The integration
is discretized over the four edges of the mesh face, using the
values at the four corners. In Figure 2, one can immediately
see an issue with this scheme. While even a large loop around
the vortex core on the bottom left unambiguously encircles a
defect in the phase field and the phase increments will sums

ALGORITHM 1: Vortex Feature Detection

1: Test each mesh element face to see if it is punctured by vortex.
(III A)

2: If desired, for all punctured faces, interpolate the location of the
puncture point. Otherwise treat as the center of the face. (III B)

3: For each punctured face, add nodes and edges to subgraph.
(III C)

4: Trace each vortex through the constructed subgraph to segment
and order the set of vortex points into separate vortex structures.
(III D)

5: Fit curves through the ordered sets of vortex points. (III E)

to 2π , only a very small loop, perhaps even smaller than the
resolution of the mesh, can be used on the bottom right. Oth-
erwise, the phase changes by more than π along individual
segments, and using only the value at segment endpoints will
result in error. In Section III A, we show how this problem is
corrected by applying a gauge transformation along the path
of integration.

If a vortex passes through a mesh element face, we say it
“punctures” the face, and the exact point it penetrates the face
is the “puncture point.” When a mesh face is found to be punc-
tured, an interpolation can be applied, based on the values of
ψ at the grid points of the mesh to determine where inside the
face |ψ| = 0, or the unique location where the vortex punctures
the face. In Section III B, we provide a generalized technique
for finding the puncture point inside a generalized mesh ele-
ment face.

In order to facilitate the topological reconstruction of each
vortex, the information determined in Step 1 is used to con-
struct a graph, described in Section III C. In Section III D we
show how this graph, which is a subgraph of the mesh, can be
rapidly traversed to reconstruct each vortex core line, as well
as used to identify rare points of contact between vortices. In
Section III E, we show how the representation of the vortex
core line can be made compact and mesh-independent.

A. Finding Punctured Faces

Given a set of complex values ψ that have been calculated
on each point of a mesh, vortex lines can be localized by cal-
culating integral along the closed path

n =− 1
2π

∮
∇θ ·dl (1)

around closed paths in the mesh. When the value of n is a
nonzero integer (usually ±1), then the path encircles a vortex
line and the sign of n indicates the chirality of the vortex with
respect to the face normal. The smallest closed path that can
be calculated is a noncolinear triangle of points, such as half
a mesh element face. For simplicity, however, we perform
closed paths integrals around the perimeters of the rectangular
mesh faces. The closed path integral is broken up into a sum
of line integrals calculated over each line segment of the path.

4

FIG. 3: Illustration of a vortex line weaving through four
mesh elements. Blue balls represent grid points where the

value of ψ is known. The bullseyes indicate the four puncture
points. Of the two integrals along closed paths illustrated,

one has a value of zero and one has as a value of one.

An illustration for mesh elements is provided in Figure 3, or

n≡− 1
2π

m

∑
1

∆θi,i−1 (2)

where

∆θi,i−1 = mod(θi−θi−1 +π,2π)−π. (3)

and m is the number of segments defining the path around the
face.

The value of phase of ψ at each grid point is stored in an
nz×ny×nx 3D array Θ, where ni is the number of grid points
along the ith axis. To calculate the phase differences in the x,
y, or z direction, a copy of Θ is rolled in the axial direction,
that is, circularly shifted one index position, subtracted from
Θ, and the 2π modulo is taken of the resultant multidimen-
sional array. We use the notation Θ1,0,0, Θ0,1,0, and Θ0,0,1 to
represent the Θ matrix rolled in the positive x, y, and z direc-
tion respectively.

For example, Figure 4 shows an annotated illustration of a
single mesh element. We let D1−2 equal the 2π modulo of
Θ1,0,0−Θ. Likewise, D4−1 = Θ−Θ0,1,0. Therefore D3−4 and
D2−3 are constructed by applying a circular shift to D1−2 and
D4−1, respectively in the y and x axis, respectively. The sum
of these four arrays, nxy, is a 3D array containing the integra-
tion of the phase, or a calculation of Equation (2), around the
perimeter of every mesh element face in the xy plane.

In the remainder of this section we explain two correc-
tions that make the calculation valid over the entire simulation
space.

This integration calculation, broken over the four segments
of the mesh element face, is an acceptable calculation of the

1

2

3
4

5

6

7

8

x

z

y

D1-2

D2-3

D4-1

D3-4

FIG. 4: One mesh element in the grid.

contour integral as long as the phase of ψ does not change by
more than ±π along any line segment. In a TDGL simula-
tion, however, the gradient of the phase of ψ depends on the
vector potential A and the applied current. In Figure 2, for
example, the box drawn around the vortex core at the bottom
of the plot has many wrappings of the phase along the top and
bottom edges of the box, meaning the phase changed by π

several times along the segment. If the contour integral was
performed around an arbitrarily small path around the vortex,
or if the value of ψ could be sampled at arbitrarily small line
segment intervals along the contour, the calculation would be
correct. However, the resolution of our calculation is deter-
mined by the resolution of the structured mesh. Nonetheless,
the value of ψ can be locally transformed to make the cal-
culation valid again. The phase of the order parameter in
the TDGL model is not uniquely defined; it depends on the
choice of the gauge for the vector potential. This choice of
gauge determines where in the plot of the phase of ψ of Fig-
ure 2 the phase lines are dense (the top and bottom) and where
they are not (the middle). By applying gauge transformations
along the contour integral, which changes the vector potential
such that high-frequency oscillations of the phase of ψ are
removed locally, a unique vortex detection and highest pre-
cision interpolation is possible. In Appendix A, we derive a
gauge-invariant contour integral. The result of this calculation
is a set of multidimensional arrays that are added to the phase
difference multidimensional arrays.

In order to perform the integration loop correctly at the
boundaries of the simulation data, the correct boundary condi-
tions need to be applied. Three types of boundary conditions
are possible in a TDGL simulation. The first is the open or
“no current” boundary condition; in this case, nothing needs
to be done. The second and third types are “periodic” and
“quasiperiodic,” respectively. In both these cases, the mesh
forms a torus, that is, the end faces of the mesh are connected
to each other. The mesh includes an extra slab of mesh ele-
ment that straddles the two end faces. If the boundary condi-
tion is periodic, the calculation performed on this extra slab is
no different from anywhere else. Depending on the choice of
vector potential, the periodic boundary conditions in one di-
rection must be replaced by a “quasiperiodic” boundary con-
dition. In this case, the magnitude of the order parameter is
still periodic, but its phase shifts across the boundary. The in-
tegration around a mesh element face straddling a quasiperi-

5

odic boundary requires a correction term for this phase differ-
ences where the boundary is crossed. In Appendix B, the cal-
culation for the quasiperiodic boundary condition correction
is provided. The result of this calculation is a two-dimensional
array that is added to a two-dimensional slice of the phase dif-
ference array when applicable.

Above we have shown how all the contour integrals around
all the mesh faces can be described by a series of circular
shifts, additions and subtractions for the regular data pattern
of a structured mesh. In practice, to keep the memory foot-
print of the problem small, the operations can be performed on
slices of the 3D array. The regular and local nature of these
calculations can be optimized in various ways to maximize
data reuse, memory, and parallelism of a given computational
algorithm.

B. Interpolating within a Mesh Element Face

Given a punctured face, a more precise prediction of the
puncture point can be determined by interpolating from the
values of ψ on the four grid points of the face. Here we use
the other definition of a vortex core point, a point where |ψ|=
0, or both the real and imaginary component of ψ are zero.
Given the four ψ values, we predict where in the interior of
the face ψ = 0. This is significantly more computationally
expensive than calculating the contour integral around a face,
and thus is not generally used as the test to predict if a face is
punctured or not.

In Appendix C, three methods are provided for interpolat-
ing the puncture point, (1) triangulation, (2) inverse bilinear
interpolation, and (3) inverse barycentric interpolation. In
Figure 5, the precision error inherent in these three methods
is shown for both a dense and sparse configuration of 2D vor-
tices. The mean error in predicting the position of the vortex
core point is compared to the length of the side of a mesh
element (both in units of ξ0, the zero temperature coherence
length, the physical length unit used in simulation). The three
methods are compared to the assumption that the vortex core
center is at the center of the punctured face (None). The grids
in the top of Figure 5 correspond to the coarsest edge length of
3.9. For this data, triangulation is slightly superior to inverse
bilinear interpolation and inverse barycenteric interpolation,
but all perform similarly. At the standard edge length chosen
in simulation, 0.5, all three have an error that is less than 1%
of the edge length.

Applying the gauge transformation not only makes the con-
tour integral numerically valid in dense vortex systems, but
also significantly improves the prediction of the position of
the vortex core point. The impact of not applying the gauge
transformation (and interpolating with the line-crossing inter-
polation method) is shown in both plots. Data is only shown
over the range where the correct number of vortices was iden-
tified. In the dense configuration, this method performs worse
than using the gauge transformation with no interpolation, be-
cause vortices are sometimes not found in the correct grid cell.
In the sparse configuration, we see that, while the gauge trans-
formation is not necessary to find punctured element faces

for sufficiently small mesh elements, not applying the gauge
transformation to the data adds significant error to the inter-
polation.

C. Constructing a Graph Structure

The 4D array n for each planar contour integral contains
only 0, 1, or -1, where the nonzero elements of n corresponds
to the punctured mesh element faces. The sign of the nonzero
element corresponds to the chirality of the vortex relative to
normal axis of the face it is puncturing.

In reference [22], the set of puncture points associated with
the non-zero faces in nxy, nxz, and nyz were compacted into
a list and then topologically sorted by Euclidean distance to
partition them into separate vortex objects. Optimally im-
plemented, this algorithm has a computational complexity of
O(Nlog(N)), where N is the number of points. However, us-
ing a Euclidean distance criteria to sort points can produce
incorrect results. In theory, two vortices that do not punc-
ture the same mesh elements can have points arbitrarily close
together. Also, this method does not extend well to meshes
where mesh elements are not uniformly sized cubes. For het-
erogenous and irregular meshes, no simple distance criteria
will work. Instead, we propose a scheme that retains the con-
nectivity information of the puncture points that is implicit in
the mesh structure and allows fast reconstruction of the vortex
objects and is of computational complexity O(N).

One way to interpret the structure of a mesh is as a graph,
where mesh elements are nodes and mesh faces are edges con-
necting two mesh elements. We assume that, given a mesh
element, there is a fixed way to order its faces, and that the
identity of each mesh element neighboring the original ele-
ment via each face is accessible via an O(1) calculation ei-
ther because of the regular structure of the mesh, or through
a precalculated look-up table. The mesh elements and mesh
faces punctured by a set of vortices is then a subgraph of this
graph. The nodes of the subgraph are punctured mesh ele-
ments. The edges of the subgraph are the shared punctured
faces of neighboring mesh elements. This is illustrated in 2D
on the left in Figure 6. Both constructing the subgraph and
connecting the core points by tracing paths through the graph
are O(N) calculations, where N is the number of core points,
that is, punctured faces.

The subgraph structure can be constructed simultaneously
with finding core points by adding an edge each time a punc-
tured face is found. Since the fraction of mesh elements that
are punctured is very small even in a dense configuration of
vortices, we choose to use a dictionary, or hash table to store
the nodes and edges. On average, inserting, retrieving, and
deleting a key-value from a hash table is O(1). The key is an
integer that uniquely identifies a mesh element, or the node.
The value is a binary string representing the punctured faces
of the element, or the edges of the node. The chirality of each
vortex face puncturing is also stored in a second binary string.
Thus for each non-zero element of n, two nodes, the two mesh
elements that share the punctured face, are added to the dic-
tionary (if not already present) and an edge is added connect-

6

FIG. 5: The precision of different interpolation methods for a dense (left) and sparse (right) vortex core distributions in a 2D
plane. For comparison, the result of the interpolation if the gauge transformation is not applied to the data (only shown over the
range where the correct number of vortices was detected) is also included. All units are persistence length, or the length unit of

the simulation. Inset in each plot is an example 1/16th of the 2D plane for each case, showing ten and five vortex cores,
respectively.

ing the nodes. The interpolated vortex center coordinates are
stored in separate dictionary using a key that uniquely repre-
sents the face.

For a mesh with hexahedral elements, each node can only
possibly have edges to six other nodes, so the edges can be
represented as a 6-bit string. In regular Cartesian mesh, no
look-up table between elements and connecting faces is re-
quired due to the simple structure of the mesh. As shown in
Figure 6 on the right, the key for each punctured mesh ele-
ment is its unique coordinate position in integer index space.
The value stored for each key is a 12-bit string, where bits 0-5
are set if faces A-F are punctured, and bits 6-11 indicate the
chirality of the vortex puncture. For the chirality bits, a bit
has meaning only if the associated face bit is set. A value of
0 indicates the more common positive chirality, while a value
of 1 indicates a negative chirality. [23]

We observe that the algorithm above can be trivially ex-
tended to an unstructured mesh, albeit dependent on the avail-
ability of a look-up table for determining what face connects
which elements. Neighbor element lookup is commonly sup-
ported in meshing libraries, such as libmesh[24].

D. Tracing Each Vortex to Extract the Topological Structure

In the subgraph, each vortex maps to a set of connected
nodes. To extract the topologically ordered set of puncture
points that define each vortex, a node is acquired from the
subgraph dictionary and its edge information is used to ac-
quire the next node in a chosen direction. Each node is re-
moved from the dictionary upon acquisition. This procedure
is repeated until no more nodes are found. The procedure is
repeated for the other direction of the original node and the
two lists of nodes are appropriately concatenated. This or-

FIG. 6: Left: Illustrated in 2D, a mesh can be interpreted as a
graph structure. The path of a vortex (green) puncturing the
mesh can be represented as a subgraph of this graph. Right:
For each punctured mesh element, the subgraph dictionary

stores a 12-bit number (i.e. a node) that indicates which faces
were punctured (i.e. the edges) and the chirality of the vortex

puncturing the face. In this example, faces A and C were
punctured; the vortex has a negative chirality relative to face

A and a positive chirality relative to face C.

dered list of nodes represents a complete vortex and can be
converted back into an ordered list of puncture points. If the
interpolated puncture points were stored in a dictionary, then
their key can be reconstructed from the nodes in the list, and
each face point can be replaced by the higher-precision inter-
polated point. To find all the vortex objects, we acquire and
trace the nodes until the dictionary is empty. Using this sub-
graph dictionary, the set of vortex objects are constructed in
computational time linear to the number of puncture points in

7

the system.
If two vortices puncture the same mesh face, this cannot be

resolved. The algorithm here depends upon the assumption
that mesh data is generated at a resolution that is commensu-
rate with the interaction lengths of meaningful physical pro-
cesses. However, in extremely rare cases, far less than 0.1%
of the punctured mesh elements, two vortices can be close
enough to puncture the same mesh element, but not the same
face. Even though, technically, the two vortices may not be
connected, for the purpose of analysis they are treated as a sin-
gle vortex object. If during the trace, a node with connectivity
> 2 is found, that is, with more than two face bits set, then
new traces are initiated in each face bit directions (barring the
direction of the original trace) and the algorithm returns a set
of lists of ordered points, one for each trace direction and one
containing just the points of the high-connectivity node.

In an even more rare case, a vortex could be close enough
to an edge or corner of a mesh element such that a contour
integral interprets the vortex as penetrating zero, two or three
faces. The likelihood of this happening is directly related to
the precision of the calculation of the contour integral. In an
infinite precision calculation, this event has zero probability
of occurring. In a single or double precision calculation, the
probability is still extremely low. In fact, we have not ob-
served this statistically unlikely event yet. Rather than adding
additional expensive checks to the vortex core finding or trac-
ing, this case would best be detected by checking traced vor-
tices for anomalous properties (e.g. having an end that does
not terminate in a boundary). Note that this can not occur due
to precision error in the interpolation since even if a vortex
core is interpolated to be slightly outside of a face, it is still
treated as puncturing the original face.

E. A Compact Mesh-Independent Vortex Object
Representation

At this stage of the algorithm, a vortex object is represented
by an ordered set of puncture points. The number of punc-
ture points is determined by the mesh resolution. Commonly,
vortices are nearly straight curves that span one dimension
of the mesh, and, thus, a far more compact, and even mesh-
independent, representations of each vortex is possible. Here
we discuss one method for compacting the vortex representa-
tion.

If we ignore the wrapping of a vortex across periodic
boundaries, by, for example, cutting a vortex into pieces when
it wraps or creating an unwrapped vortex using periodic im-
ages of the vortex, then a vortex represented as an ordered list
of puncture points is a polyline. Polyline simplification, or
the decimation and curve fitting of a polyline to create a more
compact representation, is a well-studied problem in computer
graphics with numerous available algorithms. Here we emu-
late the algorithm used by many graphics programs and dec-
imate our polyline using the Ramer-Douglas-Peucker (RDP)
algorithm[25, 26], and then further reduce and fit the polyline
using Schneider’s algorithm[27].

Given a polyline, RDP reduces it to a simpler polyline by

recursively dividing it until a distance criteria is met by each
segment. Schneider’s algorithm fits piecewise cubic Bezier
curves to a polyline, again, by dividing the polyline until a
distance criteria is met by each curve. Each piecewise cubic
Bezier curve is represented by two endpoints and two control
points. It is not strictly necessary to apply RDP to a poly-
line before applying Schneider’s algorithm, however the cost
of decimating the polyline and evaluating the distance crite-
ria is cheaper for RDP than Schneider’s algorithm, and thus,
this pre-step modestly improves the the net time of polyline
simplification. While the performance of both of these algo-
rithms are worst case O(n2), where n is the number points, on
average they are O(nlog(n)).

Both RDP and Schneider’s algorithm require an error pa-
rameter in units of distance for evaluating their distance cri-
teria. The smaller the error parameter, the more true the final
piecewise curve will be to the original set of points, the larger
the number of piecewise curves that represent the vortex ob-
ject, and the more recursive iterations will be required to fit the
curves. In units of coherence length, we chose ε = 0.05 and
0.01 for RDP and Schneider’s algorithm, respectively. These
parameters decimate the original polyline vortex by approxi-
mately a factor of 10 and then 3, when performed in series.
The final representation of the vortex object is mesh inde-
pendent because, presuming the original mesh was detailed
enough to capture the features of the vortex, then using finer
meshes should not significantly change the final compact rep-
resentation of the vortex.

FIG. 7: Three vortices, two pinned on inclusions, are shown.
Black dots are puncture points. Red curves represent the

piecewise cubic Bezier curves fit through the puncture points.
The details of how each vortex flexes as it traverses an

inclusion are apparent.

IV. PEFORMANCE

A prototype version of the vortex-finding algorithm de-
scribed above was implemented in Python using the numpy
library and serially on a single thread. All benchmarks shown
were performed on an Intel Core i7, 2.3 GHz with 4 cores and
16 GB of RAM.

8

For a benchmark testing of the analysis code, we created
a 512 MB 256x512x512 data set with a dense distribution of
vortices that is periodic in the x-direction. The data set con-
tains 305 vortices. However, each vortex wraps through the
periodic x-boundary four times on average. If we count each
time a vortex wraps through the box individually, the data set
contains 1297 vortices (Figure 8). The total amount of time
to extract all the vortices is between two and three minutes,
depending on the interpolation method used.

Table I lists the timings of the major steps of the algorithm.
Due to the dense vortex state of this data set, performing the
interpolation and fitting the cubic Bezier curves requires the
largest fraction of time, nearly three quarters of the calcula-
tion time. Strictly speaking, both interpolating and curve fit-
ting is optional. Without it, a less smooth vortex object com-
posed of ordered points is still constructed by the analysis. We
provide the timings for four different version of interpolation
(each discussed in more detail in Appendix C). The timing
difference between the methods varies by less than a factor of
two. Using the line-crossing method is the most computation-
ally efficient. If we assume, however, that we are perform-
ing line-crossing in a rectangle arbitrarily oriented in space,
a more general case, then the efficiency drops significantly.
The inverse barycentric interpolation, which makes no orien-
tation assumptions, is nearly as efficient as triangulation. The
inverse bilinear interpolation is the most computationally ex-
pensive. Generating and tracing the graph to construct topo-
logically ordered vortex structures requires only 8% of the to-
tal calculation time. Unaccounted for time is primarily I/O
operations.

FIG. 8: Benchmark data set of 256x512x512 grid points and
1297 vortices

This algorithm has two important scaling dimensions: scal-
ing with increasing data (larger grid size) and scaling with in-
creasing vortices. To separate how the algorithm scales inde-
pendently with respect to these two dimensions, we consider
two tests. In the first, Section IV A, we keep the number of
vortices fixed while increasing the grid size. In the second,
Section IV B we keep the grid size fixed while increasing the
number of vortices present.

TABLE I: Timing of Algorithm for 256x512x512 grid points
and 1297 vortices

Algorithm Step Time (sec)
Find Punctured Faces 23.2
Interpolation - Triangulation 31.2
Interpolation - Barycentric 36.3
Interpolation - Generalized Triangulation 51.0
Interpolation - Bilinear 52.1
Generate Subgraph and Trace Vortices 10.8
Fit Cubic Bezier Curves 62.0
Total (with Triangulation) 131.2

A. Scaling with Grid Size

In Figure 9, we show how the algorithm scales with increas-
ing data set size. Grid point sizes of 643,963,1283,1603, and
1923 were tested. Over all these data sets, the number of vor-
tices was kept constant at two, while the data set size was in-
creased. In this dilute vortex state, with a small, fixed number
of features to find, the bulk of the algorithm time is perform-
ing the matrix calculation. Both calculations scale linearly
with the number of grid points. Thus the total time also scales
linearly with the number of grid points, when the number of
features is kept constant and is small.

FIG. 9: Calculation time as a function of increasing the
number of grid points in the data set.

B. Scaling with Number of Vortices

The performance of steps 1-4 of the topological extraction
method described above does not depend on the topology of
vortices. These steps are invariant to factors such as the direc-
tion or the tortuous path of a vortex. They do depend on the
net vortex length in the data. The fifth step of the algorithm
does depend on the topology of the vortices; this determines
the number of recursion iterations required to fit the vortex.
However, here we focus primarily on the scaling of the algo-
rithms relative to net vortex length. In Figure 10, the size of
the mesh (128x128x128) was kept fixed while increasing the
number of vortices present. The line-crossing interpolation
method was used. As can be seen, the matrix calculation is

9

invariant to the increase in the number of features. However,
the time to trace the vortex structures, the time to calculate the
interpolations, and the time to fit Bezier curves increase lin-
early with the net length of the vortices, measured in puncture
points. Fitting cubic Bezier curves and generating the higher-
precision vortex structure by interpolating the puncture points
on the punctured faces constitutes the bulk of the computa-
tional time for the data set of a dense vortex state. Since,
over this data, vortex length is being increased by adding vor-
tices of approximately constant length in puncture points, not
by adding puncture points to each vortex, the computational
cost of fitting a cubic Bezier curve is linear to the number of
vortices in the system, and therefore to the number puncture
points. The computational cost of interpolation is always lin-
early proportional the number of puncture points. The choice
of interpolation method determines only the coefficient of the
linear dependence. Thus the four interpolation timings of Ta-
ble I should accurately predict how using different interpola-
tions methods will scale the interpolation time.

FIG. 10: Scaling of parts of the algorithm as the vortex
length increases for a fixed number of grid points.

In general, as the data set size increases, if the planar den-
sity of vortices stays constant, the apparent length (measured
in mesh elements) of all the vortices will grow in proportion
to the total number of grid points. Therefore, as simulations
approach the macroscale, the calculation of the matrix and the
tracing/interpolating of the vortex points will stay in roughly
the same balance to each other, with the matrix calculation
dominating in sparse vortex states and the interpolation cal-
culation dominating in dense vortex states. The cost of fitting
piecewise cubic Bezier curves however will grow and may
dominate the calculation. Curve fitting and the interpolation
of puncture points can be independently not performed. Many
analyses, such as tracking and event detection, do not require
the extra precision in the determination of the puncture point.
Additionally the choice to fit curves to the points depends on
whether further data compaction or data smoothing is desir-
able relative to the additional computational cost.

C. Memory Usage

In general, the minimal set of data structures to support this
algorithm, that is, the dictionary of interpolated points, the
dictionary that holds the subgraph, and the final set of vor-
tex objects, scales with the number of puncture points, Np.
In turn, the number of puncture points is proportional to the
number of vortices Nv in the data and to the discretization of a
single edge nx, that is Np ∝ Nv ∗nx. Thus the additional mem-
ory footprint of this algorithm above the original mesh data is
primarily dependent on the density of vortices in the system,
but moderate in size compared to the size of the mesh data
which is proportional to n3

x . As a rule, even for very dense
vortex states, the additional memory requirements to support
the data structures to generate the vortex objects are well less
than 10% of memory requirements for the original mesh data.
The final representation vortices, generally, is less than 0.1%
of the original mesh data.

In calculating the contour integrals, we can choose to pre-
calculate certain arrays, e.g. slices of the gauge transformation
array that are used many times for computational efficiency.
In general, the precalculated arrays adds more memory pres-
sure than the data structures hold vortex objects. Determining
the best tradeoff between precalculating certain arrays versus
recalculating values on the fly can be adapted as needed.

V. CONCLUSION

In this paper, we have presented a method that can exactly
extract the topological defect lines from a data set of complex
scalars defined over a mesh. In our application, the topolog-
ical defects correspond to vortex lines in a TDGL simulation
of a type-II superconductor. Compared with prior methods,
which generate isosurfaces, our method provides reliable sub-
grid resolution of vortex positions even when the vortices are
densely packed. The centers of vortices are detected using the
phase, rather than magnitude of the complex scalar field. In-
tegrals are performed along gauge-transformed closed paths
to find individual points along the core of a vortex. The real
and imaginary part of the field are then used to interpolate
higher precision points. The points are topologically ordered
along a single vortex line by the construction and tracing of
a subgraph generated from the underlying the mesh geome-
try. Each vortex is then transformed to a compact and mesh-
independent representation by fitting a piecewise cubic Bezier
curve through the points. The number of fitted curves is de-
pendent on the tortuosity of the vortex, rather than the mesh
resolution. While implemented here on a regular structured
mesh that is aligned along the Cartesian axes, this method can
be easily generalized to an unstructured mesh composed of
arbitrarily oriented polygonal faces.

This analysis permits details of vortex interactions to be un-
derstood at a finer detail than was previously possible. (1)
It allows vortices that are very close together to be disam-
biguated and the details of their interaction revealed. In ref-
erence [28], this method was used to examine the before and
after of two reconnecting vortices, revealing how the vortices

10

mutually bent into an anti-parallel configuration before swap-
ping parts and rapidly repelling each other. (2) It allows vor-
tices to be visualized inside the interior of pinning defects
modeled as suppressions of the ψ parameter. (3) It provides a
reduced representation of individual vortices from which ge-
ometrical properties such as length, curvature, and angle of
pinning defect penetration can be unambiguously measured.
(4) It provides the basis for tracking vortices over simula-
tions, measuring their flow velocity and detecting reconnec-
tions and pinning events. Thus, the macroscopic behavior of
the vortices can be related to the measured properties of the
simulation. (5) Additionally, this provides a far reduced rep-
resentation of the vortex state of a superconductor to be stored
compared to storing the entire state of ψ . As TDGL simula-
tions increase in size so as to model experimentally-relevant
mesoscale superconducting phenomena, it will be critical to
be able to store and visualize reduced representations of the
data, or the generation and storing of simulation data will
quickly overwhelm computational effort.

ACKNOWLEDGMENTS

We thank Alexei Koshlev and Hanqi Guo for useful dis-
cussions and thank H.G. for the method of efficiently solving
the inverse bilinear interpolation. We thank Sylvain Peyrefitte
and Volker Poplawski for providing python implementations
of the Ramer-Douglas-Peucker algorithm and Schneider
algorithm, respectively. This work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC) program and the Materials
Sciences and Engineering Division. C.L.P. was funded by
the Office of the Director through the Named Postdoctoral
Fellowship Program (Aneesur Rahman Postdoctoral Fellow-
ship), Argonne National Laboratory.

Appendix A - Gauge-Invariant Vortex Detection
The total vorticity for ψ = |ψ|eıθ is defined as

2πn≡−
∮

C
dl ·∇θ , (4)

along a closed contour C with C = ∂A (A being the area
enclosed by contour C).

However, while the magnitude of ψ is gauge-invariant, the
phase of ψ is not. In order to calculate the above line integral
in a gauge-invariant manner, let us look at the expression

js ≡ Js/|ψ|2 .

The supercurrent Js is well defined and gauge-invariant:

js =
1

2ı|ψ|2
(ψ∗∇ψ−ψ∇ψ

∗)−A = ∇θ −A ,

and therefore∮
C

dl ·∇θ =
∮

C
dl · (js +A) =

∮
C

dl · js +
∮

C
dl ·A (5)

The right hand term then becomes Φ =
∮
C dl ·A =

∫
∇×A ·

da =
∫

B ·da, or the total magnetic flux normal to the contour
area. So, now

2πn =−
∮

C
dl · js−

∫
B ·da , (6)

or the summation of two gauge-invariant integrals.
We use the expression

js =
1
|ψ̃|2

Im[ψ̃∗(∇− ıA)ψ̃] .

Where ψ̃ = ψeıKx. We obtain:

js =
1
|ψ|

Im[e−ı(θ+Kx)(∇− ıA)|ψ|eı(θ+Kx)] . (7)

Expanding this expresion, we write js =

Im
[
e−ı(θ+Kx)∇eı(θ+Kx)− ıA

]
= −A + Kx̂ + ∇θ , and

thus

2πn =−
∮

C
dl · (∇θ +Kx̂−A)−

∫
B ·da (8)

Another way to understand the derivation of this expression
is to say that, since θ is dependent on the gauge, we choose
a gauge and subsequent value of θ along the contour to be
the value where the non-current induced part of the vector po-
tential is zero. The following is the expression for the gauge
transformation for a Ginzburg-Landau system in the large λ

limit.

Ã(r) = A(r)+Kx̂−∇χ (9)
µ̃(r) = µ(r)− x∂tK (10)

ψ̃(r) = ψ(r)eıKx−ıχ , (11)

Per Eq. 11, the transformation to θ is

θ̃ = θ +Kx−χ (12)

and,

∇θ̃ = ∇θ +Kx̂−∇χ (13)

If expression (13) is substituted into Eq.4, then an addi-
tional term is required to restore Eq.4 to gauge invariance.
(Note that integrating Kx̂ around a closed loop is always zero.)

2πn≡−
∮

C
dl · [∇θ +Kx̂−∇χ]−

∮
C

dl ·∇χ (14)

We chose the gauge along the contour C , to be ∇χ = A(r).
The final expression,

2πn≡−
∮

C
dl · [∇θ +Kx̂−A(l)]−

∫
B ·da (15)

always calculates the change in θ around the contour with
zero additional phase due to the choice of gauge. This allows
larger contours to be used without the calculation becoming

11

invalid. This also supports the minimal error in the interpola-
tion of the puncture point.

The value of Eq. 15 can be exactly calculated over a set
of connected segments {li} forming a closed path, where θ is
θi−1 and θi at the endpoints of segment li, as long as θ̃ does
not change by more than π along any one segment. Namely,

2πn≡−
m

∑
1

∆θ̃i,i−1−
∫

B ·da (16)

where

∆θ̃i,i−1 = mod(θi−θi−1 +(Kx̂−A(l)) · li +π,2π)−π. (17)

The modulo operation above, which maps ∆θ̃i,i−1 into the
range [−π,π] is necessary because the difference between two
angles has a countably infinite number of values. As long as
θ̃ has not changed by more than π , then the smallest value
in magnitude is the correct one. This is also why this is a
condition for the correctness of the entire calculation.

In the large λ -limit Ginzburg-Landau solver described in
reference [11], the vector potential was defined as either a lin-
ear function in the x and z direction or in the y and z direction.
If the summation of Eq. 16 is calculated as a four-point cal-
culation around the edges of mesh element faces of a regular
Cartesian mesh, then the set of all local transformations can
be represented as two or three multi-dimensional arrays that
hold the values of

∫
dl · [Kx̂−A(l)] for dl = dx,dy, or, dz for

all the mesh element edges of the mesh.
For an xz magnetic field and correspondingly defined vec-

tor potential, the first multidimensional array is the set of z-
direction transformations, where each element is defined as,

Gz(i, j,k) =−Bxȳ(j)hz, (18)

and the second multidimensional array is the set of x-direction
transformations, where each element is defined as,

Gx(i, j,k) = Bzȳ(j)hx +Khx, (19)

where ȳ(j) = hy(j− ny
2), if the y-direction is periodic and

ȳ(j) = hy(j− ny−1
2), if it is not. The variables hx, hy and hz

are the edge-lengths of the mesh elements. There is no trans-
formation along the y-direction edge.

We can also calculate the value of
∫

dl · [Kx̂−A(l)] along
an arbitrary vector as

g(r1,r2)=∆x
(

ȳ(j1)+ ȳ(j2)
2

)
Bz+∆xK−∆z

(
ȳ(j1)+ ȳ(j2)

2

)
Bx,

(20)
where r2− r1 = (∆x,∆y,∆z) and r1 and r2 have j indices of
j1 and j2, respectively. Using this form, we can create arbi-
trary polygonal contour paths in the mesh for calculating the
vorticity.

For an yz magnetic field and correspondingly defined vec-
tor potential, the first multidimensional array is the set of z-
direction transformations, where each element is defined as,

Gz(i, j,k) = Byx̄(i)hz, (21)

and the second multidimensional array is the set of y-direction
transformations, where each element is defined as,

Gy(i, j,k) =−Bzx̄(i)hy, (22)

and the final multidimensional array is the constant x-direction
transformation

Gx(i, j,k) = Khx, (23)

where x̄(i) = hx(i− nx
2), if the x-direction is periodic and

x̄(i) = hx(j− nx−1
2), if it is not.

Again, we can calculate the value of
∫

dl · [Kx̂−A(l)] along
an arbitrary vector as

g(r1,r2)=∆xK−∆y
(

x̄(i1)+ x̄(i2)
2

)
Bz+∆z

(
x̄(i1)+ x̄(i2)

2

)
By,

(24)
where r1 and r2 have i indices of i1 and i2, respectively.
Appendix B - Quasiperiodic Boundary conditions

For the xz plane homogeneous magnetic field, the y-
direction (if specified periodic) is quasiperiodic. This means
there is a phase shift in ψ across the y boundary, whose mag-
nitude is dependent on the x and z coordinate. Hence, the
following correction needs to be added to the calculation of
∆θ̃ for any segment that straddles the quasiperiodic boundary.

QPy(x,z) =−LyBzx+LyBxz, (25)

where x and z are the coordinates where the quasi periodic
boundary is crossed in a positive y-direction. For the y-
directed edges of a Cartesian mesh, x = hxi and z = hzk.

Similarly, for the yz plane homogeneous magnetic field,
the x-direction (if specified periodic) is quasiperiodic, and the
analogous correction for any x-direction edge that straddles
the periodic boundary is

QPx(y,z) = LxBzy−LxByz (26)

Appendix C - Interpolation
Here we review multiple ways that the center of a vortex

core can be interpolated from the value of ψ at three or four
points. These methods use the set of values of ψ defined at
points along a contour to predict where inside the area en-
closed by the contour |ψ|= 0, or both the real and imaginary
part of ψ is zero.

Note that to get accurate and consistent results with con-
tour integral calculation, one value of ψ should be selected
as a reference point and the subsequent values of ψ should
have their phases corrected in the same manner as in the con-
tour integral calculation. For example, if the reference point is
ψ0 = |ψ0|eıθ0 , and next point is ψ1 = |ψ1|eıθ1 , and the gauge-
invariant phase difference calculated between the reference
point and the next point is ∆θ̃ , then the value used for the
next point should be ψ ′1 = |ψ1|eıθ0+∆θ̃ .

a) Triangulation Given a set of three or more points that
describes a polygonal contour path, each segment can be ex-
amined to see if it contains a zero in either the real or imag-
inary part of ψ , based on a linear interpolation along each
segment. If exactly two zero-points are found for the real and

12

imaginary component, respectively, then the intersection be-
tween the pair of lines connecting the two pairs of points pre-
dicts the location of the puncture point. If more or fewer than
two zero-points are found for the real or imaginary compo-
nents, then either the sign changes around the points needs to
be examined more closely to determine how to connect the
points with lines, or a different interpolation method should
be reverted to.

If the polygonal path is arbitrarily oriented in space such
that the two lines are in a 3D space and not projected to a
known plane, then the floating point representation of the lines
will be sufficient to prevent the two lines from properly inter-
secting. The intersection should be determined numerically in
a least-squares sense. If the intersection is determined in least-
squares sense, we refer to this a generalized triangulation.

b) Inverse Bilinear Interpolation
A bilinear interpolation allows the value of a function at

a point to be interpolated from the value of the function at
four coplanar (but not collinear) points. Thus, the point where
Re(ψ) = 0 and Im(ψ) = 0 can be solved by inverting the bi-
linear interpolation. Assuming the calculation is performed in
unit square coordinate system, then we seek (x,y) such that

b1 +b2x+b3y+b4xy = 0 (27)
c1 + c2x+ c3y+ c4xy = 0 (28)

where b1 = Re(ψ(0,0)), b2 = Re(ψ(1,0)−Re(ψ(0,0), b3 =
Re(ψ(0,1)−Re(ψ(0,0), and b4 = Re(ψ(0,0)−Re(ψ(1,0)−
Re(ψ(0,1)+Re(ψ(1,1). The c coefficients are similarly de-
fined for the imaginary part of ψ . Since a bilinear interpola-
tion is a quadratic function, it is not, generally speaking, in-
vertible. However, the problem can be reformatted as finding
the solution to a generalized eigenvector problem.

Av = λBv (29)

where y = λ ,

v =

(
x
1

)
, (30)

A =−

(
b2 b1
c2 c1

)
, (31)

and

B =

(
b4 b3
c4 c3

)
. (32)

By determining the eigenvalues and associated eigenvectors
of this equation, and choosing the (x,y) pair both inside the
bounds [0,1], the puncture point can be found.

d) Inverse Barycentric Interpolation
To calculate the puncture point r in a triangle arbitrarily

oriented in space, we represent the point in barycentric coor-
dinates in a 3D simplex, (λ1,λ2,λ3,0). The final coordinate
λ4 = 0, because we are constraining our point to one triangle
of the surface of the tetrahedron. Let ψ1,ψ2,ψ3 represent the
value of the complex order parameter on the three grid points
of the triangle, each of which has coordinates r1,r2,r3, where
ri = (xi,yi,zi).

As |ψ|=0 at the puncture point, both the real and imaginary
part of ψ must be zero at the point. Also, by the definition of
baryocentric coordinates, λ1 +λ2 +λ3 = 0. Hence we solve
the following equation for (λ1,λ2,λ3).

Re(ψ1) Re(ψ2) Re(ψ3)

Im(ψ1) Im(ψ2) Im(ψ3)

1 1 1


λ1

λ2

λ3

=

0
0
1

 (33)

We convert the coordinates (λ1,λ2,λ3) to r by

r = T

(
λ1

λ2

)
+ r3, (34)

where T is

T =

x1− x3 x2− x3

y1− y3 y2− y3

z1− z3 z2− z3

 . (35)

[1] J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993).
[2] D. Samuels, C. Barenghi, and R. Ricca, Journal of Low Tem-

perature Physics 110, 509 (1998).
[3] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature

432, 165 (2004).
[4] D. Kleckner and W. Irvine, Nature Physics 9, 253 (2013).
[5] M. V. Berry and M. R. Dennis, Journal of Physics A: Mathe-

matical and Theoretical 40, 65 (2007).
[6] X. H. Chao, B. Y. Zhu, A. V. Silhanek, and V. V. Moshchalkov,

Phys. Rev. B 80, 054506 (2009).
[7] S. Kim, C.-R. Hu, and M. J. Andrews, Phys. Rev. B 69, 094521

(2004).

[8] S. Kim, J. Burkardt, M. Gunzburger, J. Peterson, and C.-R. Hu,
Phys. Rev. B 76, 024509 (2007).

[9] E. Coskun and M. K. Kwong, Nonlinearity 10, 579 (1997).
[10] Q. Du, Journal of Mathematical Physics 46, 095109 (2005).
[11] I. A. Sadovskyy, A. E. Koshelev, C. L. Phillips, D. A. Karpeev,

and A. Glatz, arXiv:1409.8340 [cond-mat.supr-con] (2014).
[12] A. Glatz, H. L. L. Roberts, I. S. Aranson, and K. Levin, Phys.

Rev. B 84, 180501 (2011).
[13] I. Aranson, A. Bishop, I. Daruka, and V. Vinokur, Phys. Rev.

Lett. 80, 1770 (1998).
[14] M. B. Hindmarsh and T. W. B. Kibble, Reports on Progress in

Physics 58, 477 (1995).

13

[15] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[16] E. Hamm, S. Rica, and A. Vierheilig, in Instabilities and

Nonequilibrium Structures VI, Nonlinear Phenomena and Com-
plex Systems, Vol. 5, edited by E. Tirapegui, J. Martnez, and
R. Tiemann (Springer, 2000) pp. 207–217.

[17] S. Madruga, H. Riecke, and W. Pesch, Phys. Rev. Lett. 96,
074501 (2006).

[18] P. Olsson, Europhys. Lett. 58, 705 (2002).
[19] P. Olsson and S. Teitel, Phys. Rev. B 67, 144514 (2003).
[20] K. O’Holleran, F. Flossmann, M. R. Dennis, and M. J. Pad-

gett, Journal of Optics A: Pure and Applied Optics 11, 094020
(2009).

[21] R. Dändliker, I. Märki, M. Salt, and A. Nesci, Journal of Optics
A: Pure and Applied Optics 6, S189 (2004).

[22] K. O’Holleran, Fractality and topology of optical singularities,
Master’s thesis, University of Glasgow (2008).

[23] It is possible to devise a slightly more compact scheme since
there are only 36 independent states.

[24] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey,

Engineering with Computers 22, 237 (2006).
[25] D. H. Douglas and T. K. Peucker, Cartographica: The Interna-

tional Journal for Geographic Information and Geovisualization
10, 112 (1973).

[26] U. Ramer, Computer Graphics and Image Processing 1, 244
(1972).

[27] P. J. Schneider, in Graphics Gems, edited by A. S. Glassner
(Academic Press, 1990) pp. 612–626.

[28] V. Vlasko-Vlasov, A. Koshelev, A. Glatz, C. L. Phillips,
U. Welp, and W. Kwok, Submitted (2014).

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.

